

Original article

Using Atomic Absorption Spectrometry (AAS) for the Determination of Aluminum and Zinc in Wrapped Chocolate and Chips samples

Hamad Hasan¹, Adel Abdulathim², Asraa Bunuwarah¹, Zuhir Akrim³, Sondos Masoud¹

¹Chemistry Department, Faculty of Science, Omar Al-Muhtar University, Libya

²Medical Technology Department, Higher Institute of Science and Technology, Cyrene

³Pharmacology and Toxicology Department, Faculty of Pharmacy, Omar Al-Muhtar University

Corresponding Email. hamad.dr@oum.edu.ly

ABSTRACT

Keywords.

AAS, Chips, Chocolate, Aluminum, Zinc.

This study was carried out to determine the contents of Aluminum and Zinc in wrapped Chocolate and Chips sample by atomic absorption instrument. Ten different samples of Chocolate collected from local markets in some Libyan cities. The concentrations of Aluminum in the selected samples in this study fluctuated in the range of 1.658 and 5.433 ppm. Whereas the concentrations of zinc ranged between 3.540 and 7.723 ppm. The higher concentration of Aluminum was recorded in sample No 10, whereas the lower concentration of Al was recorded in sample No 1. On the other side, the low contents of Zinc were recorded in sample 1. The results of this study recorded that most of the selected samples containing high values of Aluminum and Zinc than reported by the World Health Organization (WHO).

Introduction

Rarely, aluminum can lead to changes in the central nervous system, erythropoietin-resistant microcytic anemia, and vitamin D-resistant osteomalacia. Individuals who have renal impairment are more vulnerable. Long-term ingestion of hydrated aluminum silicates for the control of excessive stomach acidity may lead to aluminum binding with the contents of the intestinal tract and increased excretion of other metals, such as iron or zinc; dosages over 50 g/day could potentially result in anemia.

[1]. Water, food, drinks, medications, food additives, and leaching from aluminum cookware are some of the ways that aluminum (Al) enters the human body. These days, there is no denying Al's neurotoxic potential. When administered directly to animals or inadvertently to people during dialysis, it can be harmful. Because aluminum accumulates in the brain, bones, and liver, it has also been linked to several illnesses, including bone abnormalities and dialysis encephalopathy. Aluminum has been considered a neurotoxic [2]. A few studies conducted in the Middle East link daily aluminum consumption patterns to Al toxicity. An earlier study found a correlation between the daily behaviors of elementary school girls and the amount of aluminum in their blood serum. Later, a different study used camel's milk to try to prevent aluminum chloride-induced toxicity in the kidney and liver of white albino rats. Regarding the use of aluminum cookware in cooking, there is substantial debate. According to certain research, they are dangerous and should not be used, particularly with acidic foods. According to other research, cooking with aluminum utensils and foils is safe [3].

The Provisional Tolerance Weekly Intake (PTWI) for aluminum set by the FDA and WHO was 7 mg/kg body weight. Numerous analytical techniques, such as atomic absorption spectrometry (AAS), flame atomic absorption spectrometry (FAA), and inductively coupled plasma-optical emission spectrometry (ICP-OES), can be used to evaluate low-level metals. Nevertheless, these devices are costly and have considerable running costs. The UV-Vis spectrophotometric method is a well-known analytical approach that offers a wide range of applications, low cost, and simplicity for very accurate Al³⁺ assessments in food and water. Aluminum dissolution is known to be strongly influenced by pH, temperature, and the presence of complexing agents [4]. The analysis of Al³⁺ ions and some trace elements using Eriochrome Cyanine R (EC). Fish, shrimp, chicken, and meat stakes are frequently baked in various nations by wrapping them in aluminum foil. Because of the most significant qualities of aluminum foil, its ease of handling, and the capacity to transfer heat. Many of heavy metal can be detecting by different methods as atomic absorption, Ionic coupling plasma, X ray and Spectrophotometer in different samples [5-49], the toxic compounds and metals was measured in many samples by using different instruments as HPLC, GC mass and others to detect low contents in different samples as food, Fishes, vegetables and others [50 -101]. The purpose of this study is to ascertain the amounts of zinc and aluminum in numerous chocolate goods, and metal samples were gathered from various Libyan markets.

Methods

Sampling

Ten different chocolate samples were gathered from several Libyan markets; Table 1 shows the samples.

Table 1. The studied chocolate samples

Sample No	Sample Type
1	Crazy
2	Snickers
3	Tiger (Chips)
4	Quattro
5	Kitkat
6	Smax (Chips)
7	Kamara
8	ETi Karam
9	Cono (Chips)
10	Ono

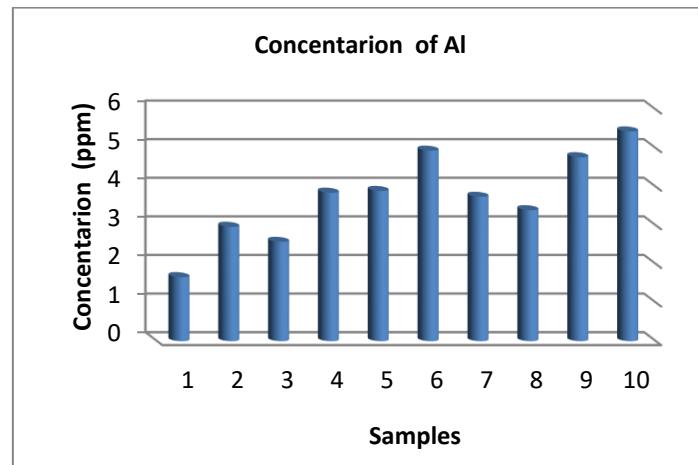
Samples preparation

0.5 gram of each sample was transferred to clean and dry conical flasks. Then, 5 ml of nitric acid and 25 ml of distilled water were added to the samples.

Digestion of the metals

The samples were digested after adding nitric acid, by used hot plate at 85 °C, where the samples were left for two hours and then allowed to cool. The samples were filtered, and the volume was adjusted to 100 mL

Determination of Aluminum and Zinc


The lead metal contents were measured by atomic absorption (Type Thermo) at the central laboratory of Omar Al-Mukhtar University. The contents of the studied metals were measured according to the Hollow cathode lamps of each one, the optimum wavelength

Results

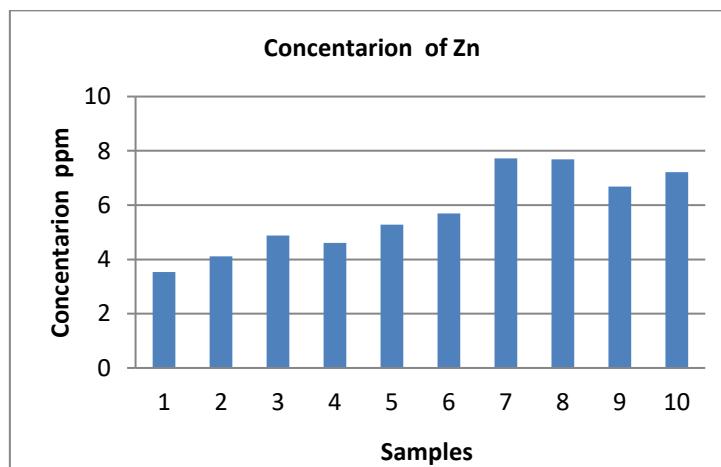

The concentrations of Aluminum in the selected samples in this study fluctuated in the range of 1.658 to 5.433 ppm. Whereas the concentrations of zinc ranged between 3.540 and 7.723 ppm. The higher concentration of Aluminum was recorded in sample No 10, whereas the lower concentration of Al was recorded in sample No 1. On the other side, the low contents of Zinc were recorded in sample 1, (Table 2) and (Figures 1&2).

Table 2. The concentrations (ppm) of Al and Zinc in the studied samples

Sample No	Aluminum Concentrations	Zinc Concentration
1	1.658	3.540
2	2.963	4.110
3	2.573	4.88
4	3.846	4.606
5	3.892	5.277
6	4.935	5.690
7	3.740	7.723
8	3.392	7.690
9	4.766	6.683
10	5.433	7.212
Average	4.07	6.22
±SD	0.924	1.264

Figure 1. The concentrations of Aluminum in the samples

Figure 2. The concentrations of Zinc in the samples

Discussion

This study recorded high values of Aluminum and zinc in the studied chocolate samples. The contents of Al ranged between 1.658 and 4.935 ppm are higher than the values recommended by WHO of 0.5 ppm. Also, the contents of Zinc of 3.540 and 7.723 ppm are higher than the values of 0.1 ppm recommended by WHO in foods. Aluminum exposure to our bodies is negligible. The World Health Organization (WHO) of the United Nations (UN) has determined that an acceptable daily intake of aluminum is 1 mg/kg body weight [102-103]. Human bodies can eliminate small amounts of aluminum quite effectively. Unfortunately, most of us are exposed to and consume more than our bodies can process for a variety of reasons [94]. According to reports, the intestines can absorb aluminum salts and concentrate them in the brain, parathyroid, and bone, among other human tissues.

Aluminum has been found in high amounts in the brain tissues of Alzheimer's sufferers. High aluminum intakes may be detrimental to certain people with bone disorders or renal impairments, according to several reports. The impacts of aluminum on health are too numerous to be list. Human brain cells grow more slowly when exposed to aluminum. Higher concentrations of aluminum cause a more noticeable decline in growth rate. For many years, wrapping food before baking is a standard procedure. Determining the content of aluminum in food wrapped in aluminum is crucial because of the potential link between aluminum uptake and the diseases indicated in numerous publications [104-105].

Conclusion

This study showed the presence of residual aluminum and zinc in the studied samples (pocketed chocolate) collected from Al Bayda city local Markets, Libya, the (Al) values were high, exceeding those of WHO (0.5 ppm), whereas the concentrations of Zn were higher than the values of WHO (0.01 ppm).

Acknowledgment

A special thanks to the members of Omar Al-Mukhtar University's central lab for their assistance with this study's metal analysis.

Conflict of interest. Nil

References

1. Soni MG, White SM, Flamm WG, Burdock GA. Safety evaluation of dietary aluminum. *Regul Toxicol Pharmacol*. 2001;33(1):66-79. doi:10.1006/rtpb.2000.1441.
2. Al-Hashem F. Camel's milk protects against aluminum chloride-induced toxicity in the liver and kidney of white albino rats. *Am J Biochem Biotechnol*. 2009;5(3):98-108. doi:10.3844/ajbbsp.2009.98.108.
3. Ščančar J, Stibilj V, Milačič R. Determination of Aluminum in Slovenian foodstuffs and its leachability from Aluminum cookware. *Food Chem*. 2004;85(1):151-157. doi:10.1016/j.foodchem.2003.07.028.
4. Al Juhaiman LA. Estimating Aluminum leaching from Aluminum cook wares in different meat extracts and milk. *J Saudi Chem Soc*. 2010;14(2):131-137. doi:10.1016/j.jscs.2009.12.020.
5. Hamad MIH. The heavy metals distribution at coastal water of Derna city (Libya). *Egypt J Aquat Res*. 2008;34(4):35-52.
6. Hasan HMI, Mojahid ul Islam. The concentrations of some heavy metals of Al-Gabal Al-Akhdar coast sediment. *Arch Appl Sci Res*. 2010;2(6):59-67.
7. Hamad MAH, Amira AKA. Estimate the concentrations of some heavy metals in some shoes polish samples. *J EPH Int J Appl Sci*. 2016;2(2):24-7.
8. Hamad MAH, Hussien SSM, Basit EEM. Accumulation of some heavy metals in green algae as bio indicators of environmental pollution at Al-Haniea region: Libya coastline. *Int J Adv Multidisc Res Stud*. 2024;4(5):188-190.
9. Hamad MIH, Ahmed MA. Major cations levels studies in surface coastal waters of Derna city, Libya. *Egypt J Aquat Res*. 2009;35(1):13-20.
10. Al-Nayyan N, Mohammed B, Hamad H. Estimate of the concentrations of heavy metals in soil and some plant samples collected from (near and far away) of the main road between Al-Bayda city and Wadi Al-Kouf region. *AlQalam J Med Appl Sci*. 2025;(1):816-26.
11. Alaila A, Bouhuish R, Ali R, Naji H, Hasan H, Akrim Z. Evaluation of mineral (Na,Ca) and Metal (Fe ,Cu ,Ni) content, alongside phytochemical screening of *Eriobotrya japonica* L. grown in two different locations in Libya. *AlQalam J Med Appl Sci*. 2025;8(3):1967-1976.
12. Al-Awjali K, Abdulsalam S, El-Mokasabi F, Akrim Z, Hasan H. Estimate the antioxidant capacity ,total phenol contents mineral concentrations , total carbohydrate of *Capparis Spinosa* L.(Kabbar), *Ceratonia Siliqua* L (Kharuwb) and *Juniperus Phoenicea* L (Arar) plants. *Attahadi Med J*. 2025;2(4):376-384.
13. Badi AH. Commercialization of medicinal and aromatic plants and its effect on the depletion of some species of these plants in Gebel Akhder [M.Sc. Thesis]. Benghazi, Libya: The Academy of Post-Graduate Studies; 2006.
14. Hamad MAH, Hanan AAK, Fatima A. Infrared (IR) characterization and physicochemical properties of Schiff base compound obtained by the reaction between 4-Hydroxy-3-methoxy benzaldehyde and 2-Amino-3. *J Res Pharm Sci*. 2021;7(3):8-12.
15. Hamad MIH, Aaza IY, Safaa SH, Mabrouk MS. Biological study of transition metal complexes with adenine ligand. *Proceedings*. 2019;41(1):77.
16. Ahmed O, Ahmed NH, Hamad MAH, Fatin ME. Chemical and biological study of some transition metal complexes with guanine as ligand. *Int J New Chem*. 2023;10(3):172-183.
17. Hamad MAH, Enas UE, Hanan AK, Hana FS, Somaia MAE. Synthesis, characterization and antibacterial applications of compounds produced by reaction between barbital with threonine, glycine, lysine, and alanine. *Afr J Biol Sci*. 2024;6(4).
18. Ashraf AA, Hamad MAH, Hanan AAK, Hana FS, Somaia MAE, Taffaha AA, et al. Molecular docking studies of some Schiff base compounds. *Afr J Afr Sci*. 2024;6(3):3324-3334.
19. Mohamed GB, Zainab SH, Hamad MAH, Hanan AKA, Mounera AAE, Mohammed MY, et al. I.R analysis and some biological applications for some Schiff base compounds prepared between (4- di methyl amino benzaldehyde) and some amino acids (Tryptophan, Phenylalanine). *Eur Chem Bull*. 2024;12(5):887-906.
20. Mabrouk MS, Moussa SF, Hasan HMA. Synthesis, characterization, and antibacterial studies of metal complexes with tyrosine ligand. *Int J New Chem*. 2023;10(5):323-339.
21. Hasan H. Biological study of some first series transition metal complexes with adenine ligand. In: The 23rd International Electronic Conference on Synthetic Organic Chemistry session Bioorganic, Medicinal and Natural Products. 2019. doi:10.3390/ecsoc-23-06601.
22. Siddiqui AA, Mojahid I, Hasan HH. Synthesis and antituberculostic activity of some novel 1, 3, 4-oxadiazole. *Hamdard Medicus*. 2011;54(1):82-9.
23. Eltawaty SA, Abdalkader GA, Hasan HM, Houssein MA. Antibacterial activity and GC-MS analysis of chloroform extract of bark of the Libyan *Salvia fruticosa* Mill. *Int J Multidisc Sci Adv Technol*. 2021;1(1):715-721.
24. Naili MB. Evaluation of antibacterial and antioxidant activities of *Artemisia campestris* (Asteraceae) and *Ziziphus lotus* (Rhamnaceae). *Arab J Chem*. 2010;3(2):79-84. doi:10.1016/j.arabjc.2010.02.005.
25. Elsalhin H, Abobaker HA, Hasan H, El-Dayek GA. Antioxidant capacity and total phenolic compounds of some algae species (Anabaena and Spirulina platensis). *Sch Acad J Biosci*. 2016;4(10):782-786.
26. Alaila AK, El Salhin HE, Ali RF, Hasan HM. Phytochemical screening of some herbal plants (Menthe, Origanum and Salvia) growing at al-gabal al-akhder region- Libya. *Int J Pharm Life Sci*. 2017;8(4).

27. Hasan H, Mariea FFE, Eman KS. The contents of some chemical compounds of leafs and stems of some herbal plants (Thymy, Rosemary, Salvia, Marjoram and Hybrid Tea Rose) at Al-Gabal Al-Akhder region. EPH Int J Appl Sci. 2014;6(3).

28. Abdelrazeg A, Khalifa A, Mohammed H, Miftah H, Hamad H. Using melon and watermelon peels for the removal of some heavy metals from aqueous solutions. AlQalam J Med Appl Sci. 2025:787-96.

29. Abdul Razaq A, Hamad H. Estimate the contents and types of water well salts by the Palmer Roger model affecting the corrosion of Al-Bayda city (Libya) network pipes. AlQalam J Med Appl Sci. 2025:744-53.

30. Abdulsayid FA, Hamad MAH, Huda AE. IR spectroscopic investigation, X-ray fluorescence scanning, and flame photometer analysis for sediments and rock samples of Al-Gabal Al-Akhder coast region (Libya). IOSR J Appl Chem. 2021;14(4):20-30.

31. ALambarki M, Hasan HMA. Assessment of the heavy metal contents in air samples collected from the area extended between AlBayda and Alquba cities (Libya). AlQalam J Med Appl Sci. 2025:695-707.

32. Hasan HMI. Studies on physicochemical parameters and water treatment for some localities along coast of Alexandria [PhD Thesis]. Alexandria, Egypt: Alexandria University; 2006.

33. Hamad MAH, Hager AA, Mohammed EY. Chemical studies of water samples collected from area extended between Ras Al-Halal and El Haniea, Libya. Asian J Appl Chem Res. 2022;12(3):33-46.

34. Hamad MH. Studies on physicochemical parameters and water treatment for some localities along coast of Alexandria. Alexandria: Alexandria University; 2006.

35. Hamad M, Mohammed AA, Hamad MAH. Adsorption and kinetic study for removal some heavy metals by use in activated carbon of sea grasses. Int J Adv Multidiscip Res Stud. 2024;4(6):677-85.

36. Hamad MAH, Hamad NI, Mohammed MYA, Hajar OAA, Al-Hendawi RA. Using bottom marine sediments as environmental indicator state of (Tolmaitha – Toukra) region at eastern north coast of Libya. Sch J Eng Tech. 2024;2(14):118-132.

37. Haroon A, Hamad MAH, Wafa AAS, Baset ESM. A comparative study of morphological, physiological and chemical properties of leafs and steam samples of (*E.gomphocephala*) (Tuart) plant growing at coastal (Derna city) and ... J Res Environ Earth Sci. 2024;9(12):10-18.

38. Hamad MIH, Masoud MS. Thermal analysis (TGA), diffraction thermal analysis (DTA), infrared and X-rays analysis for sediment samples of Toubrouk city (Libya) coast. Int J Chem Sci. 2014;12(1):11-22.

39. Hamad R, Ikraiam FA, Hasan H. Estimation of heavy metals in the bones of selected commercial fish from the eastern Libyan coast. J Rad Nucl Appl. 2024;9(1):47-51.

40. Hasan HAH. Estimate lead and cadmium contents of some archeological samples collected from ancient cities location (Cyrene and Abolonia) at Al-Gabal Al-Akhder Region, Libya. Univ J Chem Appl. 2021;12(21):902-7.

41. Alfutisi H, Hasan H. Removing of thymol blue from aqueous solutions by pomegranate peel. Int J Appl Sci. 2019;1(1):111-119.

42. Hasan JA, Hasan HMA. Potential human health risks assessment through determination of heavy metals contents in regularly consumed yogurt in Libya. World J Pharm Pharm Sci. 2024;13(12):100-12.

43. Mamdouh SM, Wagdi ME, Ahmed MA, Alaa EA, Essam AM, Hamad MIH. Rice husk and activated carbon for waste water treatment of El-Mex Bay, Alexandria Coast, Egypt. Arab J Chem. 2016;9(Suppl 2):S1590-S1596. doi:10.1016/j.arabjc.2013.03.013.

44. Mamdouh SM, Wagdi ME, Ahmed MA, Alaa EA, Hamad IH. Heavy metals accumulation in sediments of Alexandria coastal areas. Bull Fac Sci. 2012;47(1-2):12-28.

45. Mamdouh SM, Wagdi ME, Ahmed MA, Hamad MIH. Chemical studies on Alexandria coast sediment. Egypt Sci Mag. 2005;2(4):93-102.

46. Mamdouh SM, Wagdi ME, Ahmed MA, Alaa EA, Hamad MIH. Distribution of different metals in coastal waters of Alexandria, Egypt. Egypt Sci Mag. 2010;7(1):1-19.

47. Mohamed AE, Afnan SA, Hamad MA, Mohammed AA, Mamdouh SM, Alaa RE, et al. Usage of natural wastes from animal and plant origins as adsorbents for the removal of some toxic industrial dyes and heavy metals in aqueous media. J Water Process Eng. 2023;55:104273. doi:10.1016/j.jwpe.2023.104273.

48. Mohamed HB, Mohammed AZ, Ahmed MD, Hamad MAH, Doaa AE. Soil heavy metal pollution and the associated toxicity risk assessment in Ajdabiya and Zueitina, Libya. Sci J Damietta Fac Sci. 2024;14(1):16-27.

49. Nabil B, Hamad H, Ahmed E. Determination of Cu, Co and Pb in selected frozen fish tissues collected from Benghazi markets in Libya. Chem Methodol. 2018;2:56-63.

50. Wesam FAM, Hamad MAH. Detection of heavy metals and radioactivity in some bones of frozen chicken samples collected from Libyan markets. Int J Adv Multidisc Res Stud. 2023;3(3):761-764.

51. Wesam FAM, Hamad MAH. Study the accumulation of minerals and heavy metals in *Ulva* algae, *Cladophora*, *Polysiphonia* and *Laurencia* algae samples at eastern north region of Libya coast. GSC Biol Pharm Sci. 2023;23(3):147-152.

52. Citrine, Hamad H, Hajar Af. Contents of metal oxides in marine sediment and rock samples from the eastern Libyan coast, utilizing the X-ray method. AlQalam J Med Appl Sci. 2015:1316-1321.

53. Hamad R, Ikraiam FA, Hasan H. Estimation of heavy metals in the bones of selected commercial fish from the eastern Libyan coast. J Rad Nucl Appl. 2024;9(1):47-51.

54. Hanan MA, Hamida E, Hamad MAH. Nitrogen, phosphorus and minerals (sodium, potassium and calcium) contents of some algae's species (*Anabaena* and *Spirulina platensis*). Int J Curr Microbiol Appl Sci. 2016;5(11):836-841.

55. Hamad MAH, Amira AKA. Estimate the concentrations of some heavy metals in some shoes polish samples. J EPH Int J Appl Sci. 2016;2(2):24-7.

56. Mardhiyah F, Hamad H. Assessment of soil contamination by heavy metals in the Al-Fatayah Region, Derna, Libya. *AlQalam J Med Appl Sci.* 2025;1081-1091.

57. Hasan H. Biological study of some first series transition metal complexes with adenine ligand. In: The 23rd International Electronic Conference on Synthetic Organic Chemistry session Bioorganic, Medicinal and Natural Products. 2019. doi:10.3390/ecsoc-23-06601.

58. Hamad R, Ikraiam F, Hasan H. Determination of specific natural radionuclides in the bones of some local fish commonly consumed from the eastern Libyan coast. *J Rad Nucl Appl.* 2023;8(3):283-9.

59. Sroor AT, Walley El-Dine N, El-Bahi SM, Hasa HMA, Ali JM. Determination of radionuclides levels and absorbed dose for the, rock, plant and water in gondola- Libya. *IOSR J Appl Phys.* 2018;10(4):40-9.

60. Hasan H, Ammhmmid R, Khatab H, Ali J, Al kaseh A. Using gamma ray radiation to estimate the types and contents of radioactive nuclides in some ported sugar samples, Libya. *AlQalam J Med Appl Sci.* 2025;8(3):1795-803.

61. Hasan S, Abduljalil O, Mohamed F, Hasan H. Detection of residual pesticides (Imidacloprid, Aldicarb, Metalaxyl, Cypermethrin, Chlorpyrfos, DDA, and Endrin) in peach samples collected from Jabal al Akhder farma, Libya. *AlQalam J Med Appl Sci.* 2025;8(4):2099-2106.

62. Mohamed FH, Salah MIH, Omuthum A, Hasan Hamad. Sensitive and rabid method to estimate residual pesticides in some local and imported apple cultivars collected from eastern north side of Libya. *Int J Adv Multidiscip Res Stud.* 2023;3(6):100.

63. Hamad IH, Nuesry MS. Poly cyclic hydrocarbons levels in some fishes tissues collected from Derna City (Libya) Coast. In: International conference on chemical, agricultural and medical sciences; 2014 Dec 4-5; Antalya, Turkey; 2014. p. 52-6.

64. Hamad MAH, Mounera AAE, Baseet ESM, Eman E, Al-Badri M. Identification and detection aromatic and aliphatic hydrocarbons in *Epinephelus Marginatus* fish samples collected from Benghazi coast. *Int J Adv Multidiscip Res Stud.* 2023;6(3):107-13.

65. Mohammed A, Hamad MAH, Mounera AAE, Eman IHE. Extraction and identification of aliphatic hydrocarbons in marine sediment samples at Benghazi city and Dyriana town coasts (Libya). *J Res Humanit Soc Sci.* 2023;11(10):168-74.

66. Hasan MAH, Muftah HS, Abdelghani KA, Saad SI. Poly aromatic hydrocarbon concentrations in some shell samples at some Tobrouk city coast regions: could the oil industry be significantly affecting the environment. *Ukr J Ecol.* 2022;12(3):21-8.

67. Habel AMA, Mohamed NIH, Mohammed MA, Hamad MAH. Levels and sources of aliphatic and polycyclic aromatic hydrocarbons in blue runner fish from Benghazi coast, Libya. *Afr J Biol Sci.* 2024;6(3):1-10.

68. Hasan HMI, Mohamad ASA. A study of aliphatic hydrocarbons levels of some waters and sediments at Al-Gabal Al-Akhder coast regions. *Int J Chem Sci.* 2013;11(2):833-49.

69. Salem GM, Aljidaemi FF, Hwisa SA, Hamad MIH, Zaid AA, Amer IO. Occupational exposure to benzene and changes in hematological parameters in East Tripoli, Libya. *Nanotechnol Percept.* 2024;20(S5):358-64.

70. Habil Z, Ben arous N, Masoud N, Hasan H. Using GC-mass method for determination hydrocarbon compounds in some vegetable samples at Derna city, Libya. *Libyan Med J.* 2025;17(3):374-83.

71. Hasan H, Habil Z, Ben arous N. Estimate the types and contents of phenolic acid in *C.Paviflorus* lam and *C.salviifolius* L plants growing at Al-Gabal Al-hder regions. *AlQalam J Med Appl Sci.* 2025;8(3):1646-56.

72. Zeyadah MA, Bahnasaway MH, Deedah AM, El-Emam DA, Hamad MA Hasan. Evaluation of the contents of aliphatic and aromatic hydrocarbons in sediment from Zwwitina harbor coast (Libya), an indicator of petroleum pollution. *Egypt J Aquat Biol Fish.* 2023;27(6).

73. Hasan H, Abdelgader I, Emrayed H, Abdel-Gany K. Removal of the medical dye safranin from aqueous solutions by sea grasses activated carbon: a kinetic study. *AlQalam J Med Appl Sci.* 2025;8(3):428-34.

74. Hasan HMA, Alhamdy MA. Adsorption and kinetic study for removal some heavy metals by using activated carbon of sea grasses. *Int J Adv Multidiscip Res Stud.* 2024;4(6):677-85.

75. Almadani EA, Hamad MAH, Kwakab FS. Kinetic study of the adsorption of the removal of bromo cresol purple from aqueous solutions. *Int J Res Granthaalayah.* 2019;7(12):1-10.

76. Aljamal MA, Hasan HM, Al Sonosy HA. Antibacterial activity investigation and anti-biotic sensitive's for different solvents (Ethanol, propanol, DMSO and di Ethel ether) extracts of seeds, leafs and stems of (*Laurus azorica* and *Avena sterilis*) plants. *Int J Curr Microbiol Appl Sci.* 2024;13(11):175-190.

77. Hamade MH, Abdelraziq SA, Gebreel AA. Extraction and determination the of beta carotene content in carrots and tomato samples collected from some markets at ElBeida City, Libya. *EPH Int J Appl Sci.* 2019;1(1):105-110.

78. Hasan HM, Ibrahim H, Gonaid MA, Mojahidul I. Comparative phytochemical and antimicrobial investigation of some plants growing in Al Jabal Al-Akhdar. *J Nat Prod Plant Resour.* 2011;1(1):15-23.

79. Hasan H, Jadallah S, Zuhir A, Ali F, Saber M. The anti-cancer, anti-inflammatory, antibacterial, antifungal, anti-oxidant and phytochemical investigation of flowers and stems of *Anacyclus clavatus* plant extracts. *AlQalam J Med Appl Sci.* 2025:415-427.

80. Hasan H, Zuhir A, Shuhib F, Abdraba D. Phytochemical investigation and exploring the *Citrullus colocynthis* extracts as antibacterial agents against some gram and negative bacteria species. *AlQalam J Med Appl Sci.* 2025:392-400.

81. MdZeyaullah RA, Naseem A, Badrul I, Hamad MIA, Azza SA, Faheem AB, et al. Catechol biodegradation by *Pseudomonas* strain: a critical analysis. *Int J Chem Sci.* 2009;7(3):2211-2221.

82. El-Mehdawy MF, Eman KS, Hamad MIH. Amino acids contents of leafs and stems for two types of herbal plants (Marjoram and Hybrid tea rose) at AL-Gabal AL-Akhder region. *Der Pharma Chem.* 2014;6(6):442-447.

83. Gonaid MH, Hamad HH, Ibrahim HH, Mojahidul I. Comparative phytochemical and antimicrobial investigation of some plants growing in Al Jabal Al-Akhder. *J Nat Prod Plant Resour.* 2011;1(1):15-23.

84. El-Mehdawy MF, Eman KS, Hamad MIH. Amino acid contents of leafs and stems for three types of herbal plants at Al-Gabal Al-Akhder region. *World J Chem.* 2014;9(1):15-19.

85. Hamad MH, Noura AAM, Salem AM. Phytochemical screening, total phenolic, anti-oxidant, metal and mineral contents in some parts of *Plantago albicans* grown in Libya. *World J Pharm Res.* 2024;13(3):1-17.

86. Anees AS, Hamad MIHH, Mojahidul I. Antifungal potential of 1,2-4 triazole derivatives and therapeutic efficacy of *Tinea corporis* in albino rats. *Der Pharma Lett.* 2011;3(1):228-236.

87. Hamad Hasan, Marwa Mohammed, Amal Haroon. Determining the contents of antioxidants, total phenols, carbohydrate, total protein, and some elements in *Eucalyptus gomphocephala* and *Ricinus communis* plant samples. *Libyan Med J.* 2015:222-231.

88. Hamad Hasan, Zuhir Akrim, Farag Shuib, Dala Abdrraba. Efficiency of *Cynara cornigera* fruits on antibacterial, antifungal and its phytochemical, anti-oxidant screening. *Libyan Med J.* 2025:120-128.

89. Hanan MA, Hamida E, Hamad MAH. Nitrogen, phosphorus and minerals (sodium, potassium and calcium) contents of some algae's species (*Anabaena* and *Spirulina platensis*). *Int J Curr Microbiol Appl Sci.* 2016;5(11):836-841.

90. Hasan H, Mariea FFE, Eman KS. The contents of some chemical compounds of leafs and stems of some herbal plants (Thymy, Rosemary, Salvia, Marjoram and Hybrid Tea Rose) at Al-Gabal Al-Akhder region. *EPH Int J Appl Sci.* 2014;6(3).

91. El-Mehdawe MF, Eman KS, Hamad MIH. Heavy metals and mineral elements contents of leafs and stems for some herbal plants at AL-Gabal AL-Akhder region. *Chem Sci Rev Lett.* 2014;3(12):980-986.

92. Hamad Hasan, Ashour Sulayman, Ahmed Alehrir. Estimation of amino acid composition, total carbohydrate, and total protein content in *Ballota pseudodictamnus* plant extracts from Al Jabal Al Akhdar Region, Libya. *Libyan Med J.* 2025:266-271.

93. Hamad Hasan, Ahmed Hamad, Wafa Abdelsatar. Evaluation of anti-oxidant capacity, total phenol, metal, and mineral contents of *Ziziphus lotus* plant grown at some regions of AlGabal AlKhder, Libya. *Libyan Med J.* 2024:137-143.

94. Ali RFA, Hamad MAH, Ahlam KA, Hammida MEH. Phytochemical screening of some herbal plants (Menthe, Origanum and Salvia) growing at al-gabal al-akhder region- Libya. *Int J Pharm Life Sci.* 2017;8(4):5500-5503.

95. Hamad MAH, Noura AAM, Salem AM. Total carbohydrate, total protein, minerals and amino acid contents in fruits, pulps and seeds of some cultivars of muskmelon and watermelon fruit samples collected from Al. *Der Pharma Chem.* 2024;16(3):330-334.

96. Ben Arous NAA, Naser ME, Hamad MAH. Phytochemical screening, anti-bacterial and anti-fungi activities of leafs, stems and roots of *C. parviflorus* Lam and *C. salvifolius* L plants. *Int J Curr Microbiol Appl Sci.* 2024;13(11):262-280.

97. Anas FAE, Hamad MAH, Salim AM, Azza MH. Phytochemical screening, total phenolics, antioxidant activity and minerals composition of *Helichrysum stoechas* grown in Libya. *Afr J Biol Sci.* 2024;3(6):2349-10.

98. Naseer RE, Najat MAB, Salma AA, Hamad MAH. Evaluation of metal and mineral contents of leafs, stems and roots of *C. parviflorus* Lam and *C. salvifolius* L plants growing at Al Ghabal Al-Khder (Libya). *Int J Adv Multidisc Res Stud.* 2024;4(5):191-194.

99. Hamad MAH, Salem AM. Total carbohydrate, total protein, minerals and amino acid contents in fruits, pulps and seeds of some cultivars of muskmelon and watermelon fruit samples collected from Algabal Alkhder region. *Sch J Appl Med Sci.* 2024;12(1):1-7.

100. Enam FM, Wesam FAM, Hamad MAH. Detection the contents of minerals of (sodium, potassium and calcium) and some metals of (iron, nickel and copper) in some vegetable and soil samples collected from Al-Marj. *Int J Adv Multidisc Res Stud.* 2023;5(3):304-309.

101. Rinya FMA, Hamad MAH, Ahlam KA, Hammida MEH. Phytochemical screening of some herbal plants (Menthe, Origanum and Salvia) growing at Al-Gabal Al-akhder Region-Libya. *Afr J Basic Appl Sci.* 2017;9(3):161-164.

102. World Health Organization, Food and Agriculture Organization of the United Nations. Safety evaluation of certain food additives and contaminants. WHO Food Additives Series: 58. Geneva: World Health Organization; 2007.

103. Verissimo MIS, Oliveira J, Gomes M. Leaching of Aluminum from cooking pans and food containers. *Sens Actuators B Chem.* 2006;118(1-2):192-197. doi:10.1016/j.snb.2006.04.061.

104. Ranau R, Oehlenschlager J, Steinhart H. Aluminum levels of fish fillets baked and grilled in Aluminum foil. *Food Chem.* 2001;73(1):1-6. doi:10.1016/S0308-8146(00)00318-6.

105. Turhan S. Aluminum contents in baked meats wrapped in aluminum foil. *Meat Sci.* 2006;74(4):644-647. doi:10.1016/j.meatsci.2006.03.031.